C++ Programing

C++ (pronounced see plus plus) is a statically typed, free-form, multi-paradigm, compiled, general-purpose programming language. It is regarded as a “middle-level” language, as it comprises a combination of both high-levellow-level language features. It was developed by Bjarne Stroustrup starting in 1979 at Bell Labs as an enhancement to the C programming language and originally named C with Classes. It was renamed C++ in 1983. and

As one of the most popular programming languages ever created, C++ is widely used in the software industry. Some of its application domains include systems software, application software, device drivers, embedded software, high-performance server and client applications, and entertainment software such as video games. Several groups provide both free and proprietary C++ compiler software, including the GNU Project, Microsoft, Intel and Borland. C++ has greatly influenced many other popular programming languages, most notably Java.

C++ is also used for hardware design, where design is initially described in C++, then analyzed, architecturally constrained, and scheduled to create a register transfer level hardware description language via high-level synthesis.

The language began as enhancements to C, first adding classes, then virtual functions, operator overloading, multiple inheritance, templates, and exception handling among other features. After years of development, the C++ programming language standard was ratified in 1998 as ISO/IEC 14882:1998. That standard is still current, but is amended by the 2003 technical corrigendum, ISO/IEC 14882:2003. The next standard version (known informally as C++0x) is in development.

History

Stroustrup began work on “C with Classes” in 1979. The idea of creating a new language originated from Stroustrup’s experience in programming for his Ph.D. thesis. Stroustrup found that Simula had features that were very helpful for large software development, but the language was too slow for practical use, while BCPL was fast but too low-level to be suitable for large software development. When Stroustrup started working in AT&T Bell Labs, he had the problem of analyzing the UNIX kernel with respect to distributed computing. Remembering his Ph.D. experience, Stroustrup set out to enhance the C language with Simula-like features. C was chosen because it was general-purpose, fast, portable and widely used. Besides C and Simula, some other languages that inspired him were ALGOL 68, Ada, CLUML. At first, the class, derived class, strong type checking, inlining, and default argument features were added to C via Stroustrup’s C++ to C compiler, Cfront. The first commercial implementation of C++ was released in October 1985. and

In 1983, the name of the language was changed from C with Classes to C++ (++ being the increment operator in C and C++). New features were added including virtual functions, function name and operator overloading, references, constants, user-controlled free-store memory control, improved type checking, and BCPL style single-line comments with two forward slashes (//). In 1985, the first edition of The C++ Programming Language was released, providing an important reference to the language, since there was not yet an official standard. Release 2.0 of C++ came in 1989. New features included multiple inheritance, abstract classes, static member functions, const member functions, and protected members. In 1990, The Annotated C++ Reference Manual was published. This work became the basis for the future standard. Late addition of features included templates, exceptions, namespaces, new casts, and a Boolean type.

As the C++ language evolved, a standard library also evolved with it. The first addition to the C++ standard library was the stream I/O library which provided facilities to replace the traditional C functions such as printf and scanf. Later, among the most significant additions to the standard library, was the Standard Template Library.

C++ continues to be used and is one of the preferred programming languages to develop professional applications. The popularity of the language continues to grow.

Language standard

In 1998, the C++ standards committee (the ISO/IEC JTC1/SC22/WG21 working group) standardized C++ and published the international standard ISO/IEC 14882:1998 (informally known as C++98). For some years after the official release of the standard, the committee processed defect reports, and published a corrected version of the C++ standard, ISO/IEC 14882:2003, in 2003. In 2005, a technical report, called the “Library Technical Report 1” (often known as TR1 for short), was released. While not an official part of the standard, it specified a number of extensions to the standard library, which were expected to be included in the next version of C++. Support for TR1 is growing in almost all currently maintained C++ compilers.

The standard for the next version of the language (known informally as C++0x) is in development.

Etymology

According to Stroustrup: “the name signifies the evolutionary nature of the changes from C”. During C++’s development period, the language had been referred to as “new C”, then “C with Classes”. The final name is credited to Rick Mascitti (mid-1983) and was first used in December 1983. When Mascitti was questioned informally in 1992 about the naming, he indicated that it was given in a tongue-in-cheek spirit. It stems from C’s “++” operator (which increments the value of a variable) and a common naming convention of using “+” to indicate an enhanced computer program. There is no language called “C plus”. ABCL/c+ was the name of an earlier, unrelated programming language.

Philosophy

In The Design and Evolution of C++ (1994), Bjarne Stroustrup describes some rules that he used for the design of C++:

  • C++ is designed to be a statically typed, general-purpose language that is as efficient and portable as C
  • C++ is designed to directly and comprehensively support multiple programming styles (procedural programming, data abstraction, object-oriented programming, and generic programming)
  • C++ is designed to give the programmer choice, even if this makes it possible for the programmer to choose incorrectly
  • C++ is designed to be as compatible with C as possible, therefore providing a smooth transition from C
  • C++ avoids features that are platform specific or not general purpose
  • C++ does not incur overhead for features that are not used (the “zero-overhead principle”)
  • C++ is designed to function without a sophisticated programming environment

Stroustrup also mentions that C++ was always intended to make programming more fun and that many of the double meanings in the language are intentional.

Inside the C++ Object Model (Lippman, 1996) describes how compilers may convert C++ program statements into an in-memory layout. Compiler authors are, however, free to implement the standard in their own manner.

Standard library

The 1998 ANSI/ISO C++ standard consists of two parts: the core language and the C++ Standard Library; the latter includes most of the Standard Template Library (STL) and a slightly modified version of the C standard library. Many C++ libraries exist which are not part of the standard, and, using linkage specification, libraries can even be written in languages such as C, Fortran, Pascal, or BASIC. Which of these are supported is compiler dependent.

The C++ standard library incorporates the C standard library with some small modifications to make it optimized with the C++ language. Another large part of the C++ library is based on the STL. This provides such useful tools as containers (for example vectors and lists), iterators to provide these containers with array-like access and algorithmsassociative arrays) and (multi)sets are provided, all of which export compatible interfaces. Therefore it is possible, using templates, to write generic algorithms that work with any container or on any sequence defined by iterators. As in C, the features of the library#include directive to include a standard header. C++ provides 69 standard headers, of which 19 are deprecated. to perform operations such as searching and sorting. Furthermore (multi)maps ( are accessed by using the

The STL was originally a third-party library from HP and later SGI, before its incorporation into the C++ standard. The standard does not refer to it as “STL”, as it is merely a part of the standard library, but many people still use that term to distinguish it from the rest of the library (input/output streams, internationalization, diagnostics, the C library subset, etc.).

Most C++ compilers provide an implementation of the C++ standard library, including the STL. Compiler-independent implementations of the STL, such as STLPort, also exist. Other projects also produce various custom implementations of the C++ standard library and the STL with various design goals.

Language features

C++ inherits most of C’s syntax and the C preprocessor. The following is Bjarne Stroustrup’s version of the Hello world program which uses the C++ standard library stream facility to write a message to standard output:

#include <iostream>

int main()

{

std::cout << “Hello, world!\n”;

}

The C++ standard requires the main function to be defined with int as its return type, but it need not return a value with an explicit return statement, as an implicit return 0 is executed when the end of main is reached. Such an implicit <return> rule does not apply to any other value-returning functions: If control reaches their closing } undefined behavior results[14], which is why compilers issue a diagnostic (warning or error) in this case.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: